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Abstract

This paper considers the problem of an axisymmetric infinite cylinder with a ring shaped crack at z = 0 and two ring-
shaped rigid inclusions with negligible thickness at z = L. The cylinder is under the action of uniformly distributed
axial tension applied at infinity and its lateral surface is free of traction. It is assumed that the material of the cylinder
is linearly elastic and isotropic. Crack surfaces are free and the constant displacements are continuous along the rigid
inclusions while the stresses have jumps. Formulation of the mixed boundary value problem under consideration is
reduced to three singular integral equations in terms of the derivative of the crack surface displacement and the stress
jumps on the rigid inclusions. These equations, together with the single-valuedness condition for the displacements
around the crack and the equilibrium equations along the inclusions, are converted to a system of linear algebraic equa-
tions, which is solved numerically. Stress intensity factors are calculated and presented in graphical form.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many unexpected failures of equipments and various machines have occurred throughout the industrial
world. It is seen that many failures have been caused by preexisting notches or flaws in the materials that
initiate cracks. These initial cracks propagate under service loading and finally may lead to a complete fail-
ure of the structure. Crack growth occurs generally through opening of a gap between the crack surfaces.
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Stresses near the crack tips become infinitely large and therefore the stress state at the crack tips can con-
veniently be defined by the stress intensity factors (SIFs).

In the early studies, for example, the effect of a penny-shaped crack on the distribution of stresses in an
infinitely long cylinder has been studied in Sneddon and Tait (1963). A pair of Gauss—Chebyshev integra-
tion formulas for singular integrals has been developed in Erdogan and Gupta (1972). Using these formulas
a simple numerical method for solving a system of singular integral equations has been described. The axi-
symmetric semi-infinite cylinder with fixed short end has been analyzed in Gupta (1974). Normal loads have
been prescribed far away from the fixed end. An integral transform technique to formulate the problem in
terms of a singular integral equation has been used. Stresses along the rigid end and stress intensity factors
have been computed numerically. A semi-infinite elastic strip containing a transverse central crack has been
considered in Turgut and Gegit (1988). Formulation has been reduced to a system of three singular integral
equations. The elastostatic plane problem of a finite strip has been solved by Gegit and Turgut (1988) in
which the solution of the problem has been obtained by considering (i) an infinite strip containing a trans-
verse rigid inclusion at the middle and (ii) two symmetrically located transverse cracks. The general plane
problem for an infinite strip containing multiple cracks perpendicular to its boundaries has been considered
in Civelek and Erdogan (1982) by using the method of singular integral equations. The problem of a hollow
cylinder containing an arbitrarily oriented radial crack has been analyzed in Delale and Erdogan (1982).
The cylinder has been subjected to arbitrary normal tractions on the crack surfaces. Problem has been for-
mulated in terms of a singular integral equation by using the basic dislocation solutions as the green’s func-
tions. The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential
crack has been considered in Nied and Erdogan (1983). The problem has been formulated in terms of a
system of singular integral equations with the Fourier coefficients of the derivative of the crack surface dis-
placement density functions. The SIFs and the crack opening displacement have been calculated. Again the
SIFs and stress distributions in solid or hollow cylindrical bars with axisymmetric internal or edge crack
have been investigated by Erdol and Erdogan (1978) using the standard transform technique.

In the present study, the SIFs for an infinitely long elastic solid cylinder containing a ring shaped crack
whose surfaces are free of tractions and two ring-shaped rigid inclusions symmetrically located on both
sides of the crack with arbitrary but equal widths are calculated. The solid cylinder is under the action
of axisymmetric tensile loads at infinity. Material of the cylinder is assumed to be linearly elastic and iso-
tropic. The main objective of this study is to have a good acquaintance with the mathematical difficulties in
such a problem for a solid cylinder containing cracks and rigid inclusions, and also to have a good idea on
the interaction of cracks and inclusions for this particular geometry and to calculate SIFs at the edges of the
flaws.

2. Formulation and integral equations

Consider the axisymmetric problem for the solid cylindrical bar shown in Fig. 1. The infinite solid cyl-
inder contains a ring-shaped crack of width (b — a) at the symmetry plane z = 0 and two ring shaped rigid
inclusions of width (d — ¢) at z = L planes. The surfaces of the crack are free of tractions. The displace-
ments are constant and continuous whereas stresses have jumps along the rigid inclusions with negligible
thickness. The cylinder with radius A4 is subjected to uniformly distributed axial tension of intensity pg
at infinity. Therefore, the governing equations of the axisymmetric elasticity problems must be solved under
the following boundary conditions:

0.(r,0) =0, a<r<b, (1a)
w(r,0)=0, 0<r<a, b<r<A, (1b)
Uz(ra +OO) :p()a O <r< A7 (za)
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o.(r,—o0) =p,, 0<r<A4, (2b)
u(r,+L) =0, c<r<d, (3a)
u(r,—L) =0, c<r<d, (3b)
w(r,+L) =const.,, c¢<r<d, (3¢c)
w(r,—L) =const.,, c¢<r<d, (3d)
0,(4,2) =0, —o00<z< 00, (4a)
7.(4,2) =0, —o00 <z < o0, (4b)

where u and w are the r- and z-components of the displacement vector, ¢ and t denote the normal and
shearing stresses, respectively. Solution for the problem shown in Fig. 1 may be obtained conveniently
by superposing the solutions for (1) an infinite cylinder subjected to uniformly distributed tensile axial loads
at infinity, and (2) an infinite cylinder having a ring-shaped crack at z =0 and two rigid inclusions at
z = 4L (perturbation problem). The external load in the perturbation problem is the negative of the stresses
at location of the crack and the displacements at locations of the inclusions obtained from the first problem.
Solution for the displacement and the stress components for the first problem is obtained easily in the form
(Toygar, 1998)

__(k=3)p
”(r)——m”a (5a)
_ —2p, 2
o,(r,z) =0, (6a)
GZ(F7Z) :p07 (6b)
7.(r,z) =0, (6¢)

\
L }A—_
\
s Le—|— —
LZaJ '
L 2b

Fig. 1. Geometry and loading for the infinite cylinder with crack and inclusions.
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where p is the shear modulus, k = 3 — 4v, v being the Poisson’s ratio. Note here that the problem exhibits
symmetry about z = 0 plane. Hence, only one half (z > 0) of it is considered.

General expressions for the stresses and the displacements for the perturbation problem must contain
sufficient number of unknowns so that all of the boundary conditions (1)—(4) can be satisfied. Therefore,
the following three sub-problems shown in Fig. 2 are considered.

(I) An infinite axisymmetric elastic medium with no crack or inclusions: General expressions are ob-
tained by using Fourier sine/cosine transforms on z in the form (Toygar, 1998)

u(r,z) = % /0 N [— %clll(pr) + czprlo(pr)} cos(pz) dp, (7a)
w2 =2 [ {Genoor) = cllt Dior) + o] sinfp) i, (7b)
) =2 [ -toor) 4 1ton)| -+ calte = Ditor) + 2001 (pr)] fp coston) (8)
(ri2) =2 [ {erta(pr) = calte-+ S)a(or) + 2001 (pr)hpos(oz) b, (8b)
1.(r,2) = 2;“ /0 x{cll 1(pr) = ex[2prlo(pr) + (k + 1)11(pr)]}psin(pz) dp, (8¢)

where I, I, are the modified Bessel functions of the first kind of order zero and one, respectively, ¢;, ¢, are
yet unknowns.

(IT) An infinite axisymmetric elastic medium containing a ring-shaped crack of width (b — a) at z=0:
Navier equations are solved by the use of Hankel transform on r (Toygar, 1998)

) =g [ M) 1= 2p2)e (o) dp, (%)

wirz) =g | M) 1= 2020 (o) dp. (9)
2 2 2 2

ez ez ez ez

L — | — | | —_ -

HA— |
R L — — | —
o™ I

28 2a-

2l 2b-

] 2c
2

I I
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<z~

0}

<o~

(i

Fig. 2. Perturbation problem.
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2 o0 1
v = 225 [ {20 e 01 on) 200 p2ton b, (10a)
k+1J, or
4 o0
0.(r,2) = == / M(p)(1 + pz)pe " Jo(pr)dp, (10b)
k+1J,
du [ e
T=(r,z) = M(p)pzpe™J1(pr)dp, (10c)
k+1 Jo
where Jy, J; are the Bessel functions of the first kind of order zero and one, respectively,
b
M(p) = [ (o), ()
m(r) is the unknown crack surface displacement derivative
0
a Wi (r,0) —wy(r,0)] =2m(r), a<r<b, (12a)
/A
m(r)=0, 0<r<a, b<r<A. (12b)

(ITII) An infinite axisymmetric elastic medium containing two ring-shaped rigid inclusions of width
(d — ¢) at z = £L: Navier equations are solved again by the use of Hankel transform on r, and the following
expressions may be written for the displacements and the stresses in (—L < z < L) (Toygar, 1998)

1

r2) = 5ty [ U= 0P 0) = ol = P (pr)dp

byt [ a2+ 0P 0) = (L + 2Pl (o), (133)
w(r:2) = s [ 0=+ 0P+ p(L =P () dp

+ m(:jm /0 m[(*p(L +2) 4+ K)Ps(p) — p(L +2)P1(p)]e " J,(pr) dp, (13b)

o= g 20 =2) = 2071 (0) + 200 = Pr(p)fer?

H2p(L+2) = 26)P1 (p) + 2p(L + 2)Pa(p)]e =+ %Jl (pr)dp

+ ﬁ /OOO {[@p(L = z2) + (1 +3))Pi(p) + (=2p(L = 2) + (k = 3))Ps(p)]e*

H[(=2p(L +2) + (1 + 3))Pi(p) = (2p(L +2) + (i = 3))P2(p))e " } pJo(pr) dp, (14a)
0:(r,2) = ﬁ /Ox {[(=2p(L —2) = (k= 1))P1(p) + 2p(L — ) = (1 + 1))Ps(p) ]

+H(2p(L +2) = (k= 1)Pi(p) + (2p(L +2) + (i + 1))Pa(p)]e "+ } pJo(pr) dp, (14b)
va(r,2) = ﬁ /Ox {[(=2p(L —z2) = (k + 1)P1(p) + 2p(L — 2) — (k = 1))Pa(p)]e"*

H20(L +2) = (k+ )Pi(p) + (L +2) + (k= D)Pa(p)]e " } oy (pr) dp. (14c)



4782 M.E. Toygar, M.R. Gegit | International Journal of Solids and Structures 43 (2006) 4777-4794

Here

am:/m@mwwn (15a)

Py(p) = / pa(r)ro(pr)dr, (15b)

where the unknown functions pi(r), p-(r) are the shearing and the normal stress jumps on the rigid
inclusions,

T.(r L") — 1., (r, L7) =p,(r), c<r<d, (16a)
o.,(r,L7) — 0., (r,L7) =p,(r), c<r<d, (16b)

satisfying the conditions
pi(r)=p(r)=0, 0<r<e, d<r<Ad. (17a,b)

When the general expressions for these three sub-problems are added together and substituted in the stress
boundary conditions at the lateral surface of the solid cylinder, (4a) and (4b), the unknowns ¢y, ¢, are cal-
culated. The general expressions for the perturbation problem are obtained in terms of the three unknown
functions M(p), P1(p), P»(p) which will be determined by using the boundary condition (1a) on the crack,
(3a) and (3c) on the inclusions. It is noted that (3a) and (3¢) are displacement type conditions whereas (1a)
is a stress type condition. These three boundary conditions can be put into the form

0.(r,0) = —p,, a<r<b, (18)
0

aw(nL) =0, c<r<d, (19a)
10 33—k p,

— L) = = d 19b
Sl D] =352 e (19b)

for the perturbation problem. Substituting the sum of the expressions given in (8b), (10b) and (14b) for the
stress g, in (18); (7b), (9b) and (13b) for the displacement w in (19); and (7a), (9a) and (13a) for the displace-
ment u in (19b), separating the divergent integrals giving the simple Cauchy-type singularity, Muskhelishvili
(1953), after lengthy manipulations, the following singular integral equations are obtained (see Toygar
(1998) for details):

2_,“ b

- [L-FZHI(;’,I) +tN11(V7l)}m(f)df+/Cdt[Tl(’”a’) —%le(r,t)}pl(t)dt

« =7

N /d{n(n 1) —%Nn(r, t)}pz(t) dt = —(k+ )py, a<r<b, (20a)

20 / bt[T3(r, ) +%N21(r, t)]m(t)dH— / dz{n(r, 9 —%Nzg(r, z)} o

d K k 1 4
+[ |:tT5(V,t)+EH2(r,f)+Em—gthz(r,t>:|p2(l)dl‘—0, c<r<d, (20b)
b 2 d K Kk 1 4
2u | t Tﬁ(r,t)qL;Nn(r,t) m(t)dt + tT7(r,t)+;H3(r,t)+Et_—r—;tN33(r,t) py(2)de

d 4 3
- / t|:Tg(l", t) +;N32(r, Z)}pz(t) dt = —2(k + 1)%170, c<r<d, (20c)
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where
Hi(r 1) :% i=1,....3 (21a-c)
[ 2l .
my(r,t) = o E(f) o ) (22a)
t+ro\t)’
) t—2|—trE(£>’ b<r 220)
my(r,t) = 5 )
() ) oo
- R () o -
ms(r,t) = )
t?:rE(;)’ r<t

K and E are the complete elliptic integrals of the first and the second kinds, respectively. Ny(r,?)
(i,j=1,...,3) are the kernels and T(r,7) (i=1,...,3) are the elliptic integrals and are defined in the Appen-
dix A. Eq. (20a)—(20c), must be solved together with the following single-valuedness condition for the dis-
placement around the crack

/ (0)edi = 0 (23)

and the equilibrium conditions for the stresses on the rigid inclusions,

/dp,(t)tdt =0 (i=12). (24a,b)

When the integral equations (20a)—(20c) are examined closely, one may realize that

(i) there are Cauchy-type singularities at 1 =r,
(i1) the kernels Hyy, H»>, H33, have only logarithmic singularity at A =0,
(iii) among the kernels Ny, (i,j = 1,...,3) only Ny, Ny, N33 have singular terms when ¢t = dand r = 4. Ny;
are all bounded when r < 4 and can be written in the form

N,-j(nt) :/0 L,‘j(r, t,i)d)u, (l,]: 1,,3) (25)

Lengthy expressions for the integrands Ly, (i,j = 1,...,3) contain Bessel functions and are given in Toygar
(1998). The singularity at zero may easily be removed by examining the behavior of integrands L; for 2 — 0
and giving regard to (23) and (24). It can be shown that the integrands of the kernels are bounded every-
where except for 1 = co. By examining the asymptotic behavior of the integrands in (25) for 4 — oo, the
singular terms may be separated. Introduce the following notation:



4784 M.E. Toygar, M.R. Gegit | International Journal of Solids and Structures 43 (2006) 4777-4794

Nijs(r7 t) = / Lijoo(r? t? )V)dj‘ (17] = 17 .. 'a3)a (263)
0
sz/'ac(ryta}~) :)hm Lii(rata}“) (17]: 1a---73)7 (26b)

in which the expressions for L;(r,#,4), (i,j=1,...,3) are given in the Appendix A. The bounded parts of
the kernels can then be expressed as

Nip(r, 1) = Ny(r,1) = Nyg(r,t) - (i,j=1,...,3), (27a)

NWUJ%:AxMﬂnLM—LWﬁnJHM,Ulewuﬁ) (27b)

By using the asymptotic expressions of modified Bessel functions, for positive values of r and ¢, the expres-
sions for L;..(r,,/) can be obtained and their integrals give

Ni(rt) = | -2+ 12(4 - r)%— 4(4 — ”)2:11,,2] [r_H‘l_ZA]’ (28a)
Naulri) = [0 =3) 430 - g - -] | (28)
N%o@_hﬁa+3@@;u@iLHwHin. (28¢)

Together with the simple Cauchy kernel, 1/(z — r), N1, N2>, N33 constitute generalized Cauchy kernels. The
unknown functions mi(t), pi(¢) and p,(¢) have integrable singularities at the end points. Writing

m(t) =M (0)[(t—a)(b—1)]7, 0<Re(y) <1, (29a)
p(t) =P(0)[(t—c)(d—10]" (i=1,2), 0<Re(d) <1, (29b,¢)

where M*(¢), P;(t) (i =1,2) are Holder-continuous functions in the respective intervals [a,b] and [c,d],
after somewhat routme manipulations, Toygar (1998), it can be shown that y and ¢ satisfy the characteristic
equations

cotmy =0, (30a)
cotnd =0, (30b)

which give y = 1/2 at the edges of the crack (r — a, r — b) and 6 = 1/2 at the edges of the inclusions (r — ¢,
r — d). The system of three singular integral equations (20a)—(20c), with the single-valuedness condition
(23) and the equilibrium conditions (24a,b), are first normalized and then by using the Gauss—Lobatto inte-
gration formula, are put into the form of a system of linear algebraic equations. Introducing the dimension-
less variables o, & on the crack and 5, f on the inclusions by the relations

z:b;aowr%, a<t<b —-l<a<l, (31a)
r:b;af égﬁ, a<r<b, —1<&<l, (31b)
t:d;CnJr%, c<t<d, —1<n<l, (31c¢)

d d*ﬂ c<r<d, —1<p<l, (31d)
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the integral equations (20a)—(20c), (23) and (24a,b) may be written in the form

1

2*” m (o) |:ﬁ1(£705) +oc%§+ Nll(f,“):l do +% /1}_71(77)[Tl(fa’7) — Nip(&,7)]dn

Jr%llﬁz(”)[TZ(fan)*Nm(éa’?)]di’l:*(K+1)p0, —1<é<, (32a)
2?” 71m(oc) [?3(ﬁaa)+ﬁzl(ﬂ,a)]da+%[lﬁl(n)[74(ﬁ,n)—NB([},;/])]dy’

+%[lﬁz(n) [Ts(ﬁﬂ?)—ﬁz(ﬁﬂl)-l-nKﬂ—ﬁzz(ﬁ,n)]dr/:O, —1<p<l, (32b)
2;”[lm<“>[?6(ﬁ7a)+Nsu(ﬁ,a)]da+%Lz‘m(n) [77(ﬂ,n)+ﬁs(ﬁ,n)+ﬁ—m(ﬁ,n) dn

2 [ m -~ Fatpan = 2+ 12 5p, <p<n, 2

where

m(“):m(bga“b;a)’ (33a)
p,-(n)p,-<d;cn+dzc> (i=1,2). (33b,¢)

By substituting singular behavior of the dimensionless unknown functions

m(a) =M@)(1—a?)"? —1<a<l, (34a)
pin) =Pi(m)(1—n)"'? (1=1,2), -1<n<1 (34b, ¢)

and by using the Gauss—Lobatto integration formula, Stroud and Secrest (1966), (32a)—(32c) may be con-
verted to a system of linear algebraic equations. This system is solved numerically. The infinite integrals are
calculated using Laguerre and Filon integration formulas, Stroud and Secrest (1966). After the numerical
solution is completed, mode I SIFs k,, ky;, at the edges of the crack, mode I SIFs k., k1, and mode 1T SIFs
ke, koy at the edges of the rigid inclusions may be calculated

ki = lim /2(a = r)a.(r,0), (35a)
ki = 1im /2(r = b)a.(r,0), (35b)
kie = 1im \/2(c = r)o.(r, L), (36a)
ki =lim /2(r — d)o.(r, L), (36b)
kae = 1im \/2(c = r)72(r, L), (36c)

r—c

ko = lin} V2(r—d)t.(r,L). (36d)
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3. Numerical results and discussion

Some of the calculated results are presented in graphical form in Figs. 3-12 for the normalized SIFs at
the edges of the crack

kiz = kia/poV/ (b — a)/2, (37a)
kiy = kw/po/ (b —a)/2 (37b)

and the normalized SIFs at the edges of the inclusions

kyz = kie/po/(d =€) /2, (38a)
kg = kwa/po/(d = ¢)/2, (38b)
ksz = kac/po/(d =€) /2, (38¢)
kg = kaa/py\/(d =€) /2. (38d)

Table 1 shows the comparison of the results for k-, k; when L/4 — oo with Nied and Erdogan (1983) for
a particular geometry. Table indicates a pretty good agreement.

Figs. 3-5 show the normalized SIFs kg, ky; at the edges of the crack whose centerline is at r = 4/2 since
a+ b = A. Centerline of the inclusions is also at r = A4/2 since ¢ + d = A too. Fig. 3 gives variations with the
crack width when L/4 = 1 and v = 0.3. It seems that both SIFs increase when the crack width increases. ki
is more sensitive to crack width and is greater than ky;. Both are larger for wider inclusions. Fig. 4 gives
variations of ki and ky; with inclusion width when L/4 =0.5, b — a = 0.84 and centerlines of the crack
and the inclusions are all at r = 4/2 again for various v values. ki seems to be sensitive to v for relatively
wider inclusions while k7; seems to be practically independent of v. k- is always larger than k;. Fig. 5 shows
variations of normalized SIFs ki, ky; at the edges of the crack with L/A when a+b=A, c+d= A,

v =03

ki, kib

Fig. 3. Variation of the normalized stress intensity factors k;, kp; with (b —a)/4 when L=A,a+b=A,c+d=A4,v=0.3.

la®
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6.4y

v=04

kiz. ki
la. “1b 39

v=02

v=103
1.6} \ NN,
v=04 —/
0.0 : : : ;
0.0 0.2 0.4 0.6 0.8

(d—c)/A

Fig. 4. Variation of the normalized stress intensity factors kp;, ky; with (d — ¢)/4 when L=10.54,b —a=084,a+b=A,c+d=A.

la?

20

1.8+

16+

kg, kip

14}

1.2+

10 L L L L L L Il

L/A

Fig. 5. Variation of the normalized stress intensity factors ky;, ky; with L/A when a+b=A, c+d=A,b—a=0.64, v=0.3.

la’
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7
v =03
L L/A =10 d-c = 0.8 A
6
r d-c = 0.5 4
5 L
I 0.2 A
4 L
7k]z,kﬁ L
3
0.8 A
2 L
i 0.5 A
1L .02 4
0 = |
0.0 0.2 0.4 0.6 0.8

(b—a)/A

Fig. 6. Variation of the normalized stress intensity factors ky;, ki with (b —a)/A when L=A,a+b=A4, c+d=A4,v=03.

—kic . kg

3.5

(d-c)/A

Fig. 7. Variation of the normalized stress intensity factors ky;, ki with (d —c)/A when L=A4,a+b=A,c+d=A4,v=0.3.

le?
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221

18

14

—kic. Kid 1o |

0.6 |

0.2

Fig. 8. Variation of the normalized stress intensity factors kg, k7 with L/A whena+b=A, c+d=A4,d—c=0.54,v=0.3.

le?

ksc.—Kad

—0.4 1 | 1 | 1 | |
0.2 0.4 0.6 0.8
(d—c)/A

Fig. 9. Variation of the normalized stress intensity factors ks, ks; with (d —c)/Awhen L=A,a+b=A,c+d=A4,v=03.
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1.2 -
LA=0.5
I b-a =0.84 04 =V

1.0

n.e 03
0.6
kz?, —k3g
0.4 a2
0.2
A . o~

0.0 | / \\\

v =04 0.3 0.2 N

—0. 2 | I | | L | )
0.2 Q.4 0.6 0.8
(d-c)/A

Fig. 10. Variation of the normalized stress intensity factors ks, ks; with (d —c)/4 when L=0.54, b—a=084, a+b=4,
ct+d=A.

1.5 v =03
L/A =05
dc =04A
0.6 A = c+d
1.1 -
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Fig. 11. Variation of the normalized stress intensity factors k5, ks; with (b — a)/4 when L =0.54, d — ¢=0.44,a+b=A,v=0.3.

b—a=0.64 and v = 0.3. Three inclusion widths are considered: 0, 0.44, 0.6A4. It seems that the effect of
the inclusions on the crack is maximum when L/4 ~ | and this effect vanishes practically when L/4 > 5.

Figs. 6-8 show the normalized mode I SIFs k;, kq; at the edges of the inclusions whose centerline as well
as the centerline of the crack are at r = 4/2. In Figs. 6 and 7, L/4 =1 and v =0.3. As can be seen from
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Fig. 12. Variation of the normalized stress intensity factors k5, ks; with L/Awhena+b=A,c+d=A,b—a=0.64,d — c=0.84.

Table 1
Comparison of k;, kg when L/A — oo for a =0.5054, b =0.5954, c+d= 4
Nied and Erdogan Present study
ki 1.028 1.024
k 0.989 0.984

Fig. 6, ki and ky; both increase monotonically as the crack width increases when d — ¢ =0.24, 0.54, or
0.84. Fig. 7 shows that, for relatively wide cracks, e.g., when b — a = 0.84, ky; and ky; first decrease as
the inclusions get wider up to d — ¢~ 0.54 and then increase as d — ¢ increases further. This may be
due to the fact that crack edges create more disturbed stress fields in comparison with inclusion edges.
ki seems to be more sensitive and is always larger than ky;. Fig. 8 shows variations of k1, ky; at the edges
of the inclusions with L/A when a+b=A, c+d=A, d— ¢ =0.54 and v =0.3. Three crack widths are
considered: 0, 0.44, 0.64. Maximum interaction is observed when L/4 ~ 1 and it fades away when
L/A>17.

Figs. 9-11 show variations of the normalized mode II SIFs k5; and k5 at the edges of the inclusions with
crack and inclusion widths. In Fig. 9, L/A =1, v = 0.3 and all centerlines are at r = 4/2. ks increases con-
siderably as d — ¢ increases and/or b — a decreases. On the other hand, k5; decreases as d — ¢ increases and
seems to be slightly effected when b — a changes for relatively large values of d — ¢. In Fig. 10, L/4A =0.5,
b —a=0.84 and all centerlines are at r = 4/2. k5 increases as d — ¢ and/or v increases. In general, k5; is
larger for larger v, except for d — ¢ > 0.74A4. Note that the inclusions become ineffective as v decreases, i.e.,
as Poisson’s effect diminishes. In Fig. 11, L/4 = 0.5, d — ¢ = 0.44, v = 0.3 and the centerline of the crack is
at r = A/2. As ¢+ d increases, the inclusions with constant width 0.44 move outward and ks decreases.
ks; and ks; decrease when b — a increases.
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Fig. 12 shows variations of the normalized SIF’s k5. and kg; at the edges of the inclusions with /4 when
at+tb=A4,ct+d=A4, b —a=0.64 and d — ¢ =0.84. Three values for v are considered: 0.2, 0.3, 0.4.
ks; and ks; both increase as L/A increases up to ~2.5, after slight decreases until ~5, remain constant
afterwards.

4. Conclusions

The effect of two rigid inclusions on crack propagation in an axisymmetric infinite cylinder under uni-
axial tension is being examined. The normalized SIFs for crack and inclusions are computed and presented
in graphical form. It is observed that the normalized mode I SIFs at the edges of the crack and at the edges
of the inclusions increase with increasing inclusion width while crack is propagating radially. However, the
normalized mode IT SIFs at the edges of the inclusions decrease with increase in inclusion width. As the
crack gets closer to the circumference of the cylinder, considerable increase is observed in the normalized
SIFs. As the inclusions get farther from the crack, the normalized mode I SIFs at the edges of the crack and
the inclusions decrease, but the normalized mode 11 SIFs at the edges of the inclusions increase. Interaction
fades away when L/4 > ~ 7. It is also observed that the SIFs are influenced by the material property which
is brought into consideration by the Poisson’s ratio. As the Poisson’s ratio becomes smaller, the effect of the
rigid inclusions becomes smaller too.

Appendix A

Expressions of the infinite integrals appearing in Eq. (20a)—(20c) are

N,:,:/ Liioo(r,t,)v)dl+/ [Lij(r,t,2) = Lijno(ry 8, A)]dA, i=1,...,3, j=1,...,3, (A1)
0 0
where the unbounded integrands are given in the form
ef/l(ZAfrft)
Lijge=———{—4A - 1) A -0 +2(A—r)A+6(4—1)]—4},
\rt
L = S s AL 24 = 1) — 07 + k(A = )7 — 3 — 07— L (ke — 1
o = ————COS —r)d—t —r)=3A—-0)A—=(Bk—1)},
= S s L2040 4l =)= 3 = )7 = 5 G- 1)
e = T b o = YA = 02+ k(A — )i+ 30— ) — LB+ 1
o= sin AL —2(A — r)(4d — ¢ - —0)A—= ,
13 NG sin { (A4 —7r)( VAT + (4 — )i+ 3( ) 2( K+ )}
I = S = ) = )22+ (A — (A 29i— et s
o= ————13 —2(4 — —t - —t - ,
o = SR = = 0 4 4= = )+ D5 (643}
I = s A—r)(A—D2+ - )i—(f—s—l)(/l—t)}—l( 242k — 1)
o = = cos A r At r 3 i K ,
Lo = ™ nand 4= A= 2+ K4 — )A+(5+1)(A—t);—1( 2 42kt 1)
Boo = T ) r St r 3 L g (e K ,
L = o =02 — (4= ) 24— 07— L3
o = ——— - — )/ — (4 - - — )i —=(k—=3) ¢,
o= S {2 = 02 = (=i e D - 02 4= 3)]
e~ A24-r—1)

Ly =
32¢ \/ITZ
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e H2a-r-1) , K 1 1, ,
L33w\/r_ts1niL{(Ar)(At)i —E(Afr)/lJri(;c—Z)(A—t)A—Z(;c 2;c1)}, (A2)

T(r,t), (i=1,...,8), the elliptic integrals, are defined as follows:

Ty(r,t) =2Lg(r,t) — (k — Dh(r, 1),
Ty(r,t) = 2Lp(r,t) + (x + 1)q(r,1)
T3(r,t) =2La(r,t) + (k + 1)b(r, 1)
;4@, f) - 2Le(r, 1), (A.3)
5(}", t) - ZLd(}’, t) - Ke(rv t)v
To(r.) = —2Lg(r. ) + (x — Di(r.1),
T7(r,t) = =2Lf (r,t) + xn(r, 1),
Tg(l", t) = ZLZ(}", t)a
in which
alr) = [ e )1 or)
blrt) = [ pe (o)1 (1),
)= [ e 0 lr) .
dir) = | " e gy (pt)Jy (pr) dp,
e(r,1) = /0 ) pe 1Jo(pt)J 1 (pr) dp,
10.0= [ re i
) = | " e (pt)Jo(pr) dp,
) = [ e i oalr) .
) = [ o (o) i,
z(r,t) = /OOC p*e LTy (pt)Jo(pr)dp. (A4)
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